text-to-3D in Colab!
ajavi.com/dreamfields

-Zero-Shot Text-Guided Object Generation with Dream Flelds

Jon Barron

e o

Text-to-image generation now supports
incredible quality and diversity.

"an armchair in the shape of an
avocado." (DALL-E)

"A chromeplated cat sculpture placed on a
Persian rug." (Imagen)

But due to limited data, generative models
for 3D are narrow and category specific.

conditioning information
(latent, pose)

Neural Radiance Fields are photorealistic, but need many multi-
view photo captures. How to design novel content?

Captured Photometric
Images + poses loss
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Can 3D reconstruction systems be trained with no photos?
We perform text-to-3D synthesis by training Neural Radiance
Fields with zero input photos, only a caption.

“An epic wondrous
fantasy painting
of an ocean”

. Ajay Jain  Ben Mildenhall
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Training Neural Radiance Fields with CLIP

+ NeRF

DietNeRF regularized NeRF with
a feature space loss, supervising
novel views during training and
transferring 2D knowledge.
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Rendering

Observed

Intuition: All views should have consistent semantics.
"A bulldozer is a bulldozer from any perspective."

Our insight: Train NeRF
entirely in feature space.
An alighed image-text
representation like CLIP
allows us to control
synthesis with a caption.
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“Washing
blueberries”

Lcyp (6, pose p, caption y)
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MSE loss

Text to 3D with multi-view consistency

bouquet of flowers sitting in a clear glass vase.
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Compositional 3D generation --> easy concept exploration.

PROMPT TEMPLATE:

"an armchair/teapot/snail in the shape of a N i the thepe of
avocado brain coral doughnut glacier gourd lotus root orchid peach
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Problems / Contributions

1) Lack of 3D data Solution: Captioned photographs are
Problem: There aren't many 3D abundant and diverse. We repurpose
models available, making it scalable pre-trained image-text
difficult to train 3D generation. representations like CLIP.

2) Underconstrained scene representation

Problem: Photorealistic 3D
scene representations like
NeRF are too flexible without
photos or learned priors.

Solution: Regularize scene to be
opaque but compact. Improve MLP for
easier optimization.

5 4

-

Regularizing Dream Fields

Dream Fields lacks a 3D prior, = v
and NeRF can fit highly &

degenerate geometry (floaters, N

occlusions, translucency). o<l

To fix geometry, we remove view dependence to model the shape without
lighting and regularize mip-NeRF to be sparse and compact.
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+ Maximize transmittance

T(r.0,1) = exp (- /t t Jg(r(s))ds>

L7 = —min(7, mean(T(0,p)))

4K iterations 24K iterations 100K (final)

8K iterations

Augment backgrounds + random crop

Gated
—Lr* Lepip

Additive
Lceup + ALt

Beta
loss
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No Perturb density o =
regularizer softplus(fg(x + €))

White
backgrounds

“an illustration of a
pumpkin on the vine.”

Augmented
backgrounds
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baguette basil beetroot burrito cabbage cake calamari chili croissant cucumber
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"a picture of a . | . I text
a cluster of pine flamingo scratching Repeated structures at "A pug dog." mprov.lng reafism, (ext. _
tggfse?lréel;élaa ‘_ its neck” different viewpoints. * Exporting assets for graphics.
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